

Endotoxin Detection

Josh Carson

Licensing Associate

PROBLEM:

The current test for endotoxins in parenteral drugs systematically underreports the presence of endotoxin, leading to postmarketing commitments and additional process controls.

- Chelators and surfactants commonly used in biologics can mask endotoxin in the commonly used LAL assay.
- Low endotoxin recovery (LER) can lead to regulatory delays, including holdtime studies and post-marketing commitments.
- Manufacturing facilities need to account for inhibitory effects on assay results by instituting more stringent process controls.

The Solution - Biophysical Liquid Crystal Tests for Endotoxin

SOLUTION:

Liquid crystal droplets can be used in a biophysical test to detect the presence of endotoxin.

Liquid crystals bind to endotoxins and change phase and optical properties.

• Changes in physical properties (light scattering and transmission of polarized light) can be read with a microscope or flow cytometer.

LC droplets - a sensitivity of 0.1-1 pg/mL <u>within one minute</u>, which is more sensitive and faster than commercial LAL assays

LC Assay Shown to Work in the Presence of Masking Agents

Divalent cations, an example of a masking agent, has been shown **not to interfere** with the liquid crystal assay.

LAL Assay

LCD Assay

Competition – All Susceptible to LER

	Test	Prevalence	Pros	Cons
THEM	Limulus Amebocyte Lysate (LAL) Assay	 Widely used Offered by CROs and CMOs (Lonza, Charles River, etc.) Kits also available 	UnderstoodIn use	 Inconsistencies batch to batch Susceptible to LER Matrix effects Uses horseshoe crab blood
	Recombinant Factor C (rFC) Assay	Limited offering	 Does not use horseshoe crab blood Batch to batch consistency 	 Susceptible to LER Uses same coagulation cascade as LAL Assay
	ELISA Assay	Limited offering	 Does not use horseshoe crab blood 	Susceptible to LER

	Test	Prevalence	Pros	Cons
US	LC Assay	Ready for partnership	 Does not use horseshoe crab blood Batch to batch consistency Not susceptible to LER 	Very early stage

Market

• The global endotoxin testing market was valued at \$531.0 million in 2017 and is expected to grow at a CAGR of 18.7%, to reach \$1.3 billion in 2022.

(BCC Research, "Biologics Development and Manufacturing Testing: Technologies and Global Markets" Mar 2018)

- Biopharmaceuticals are a rapidly growing segment of human therapeutics market.
- The surfactants and buffers that are related to LER are increasingly used in parenteral drugs.

Intellectual Property

P09241 – Analyte Detection Using Liquid

- Three issued US patents (9,080,973; 9,341,570; and 9,547,018)
- One issued patent in China
- One pending application in European Patent Office
- Broad claims to systems and methods of detection
- Priority date April 2009

P160072 – Using Liquid Crystal to Detect Endotoxin in the Presence of One or More Potential Masking Agents

- One pending application in US
- Broad claims to systems and methods of detections in the presence of masking agents
- Priority date December 2015

Research Team

Nicholas L. Abbott

- Currently Tisch University Professor at Cornell University
- Previous professor at University of Wisconsin Madison, and University of California - Davis
- Founder of Platypus Technologies
- Under sponsored research, collaborated with a major pharmaceutical company about solutions for low endotoxin recovery in biologics manufacturing

Publications

Carter, et al., (2015) "Synthetic Mimics of Bacterial Lipid A Trigger Optical Transitions in Liquid Crystal Microdroplets at Ultralow Picogram-per-Milliliter Concentrations" *Langmuir*, Vol. 31, Issue 47, 12 November 2015, p. 12850-12855

Miller, et al., (2013), "Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets", *Soft Matter*, Vol. 9, Issue 2, 14 January 2013, Pages 374-382

Lin, et al., (2011) Endotoxin-induced structural transformations in liquid crystalline droplets" *Science*, Vol. 332, Issue 6035, 10 June 2011, Pages 1297-1300

Biophysical test is more robust and not subject to lot-to-lot variations, requiring constant recalibration.

Not dependent on the coagulation cascade.

Matrix effects result in inhibition for the standard limulus amebocyte lysate (LAL) assay.

Summary

- A new biophysical test has been developed for the detection of endotoxins, and has been proven to out-perform the LAL assay in low endotoxin recovery conditions.
- Proof-of-Concept showed favorable performance versus standard assays.

Seeking a commercial partner to develop, test and launch product.

- Contact Information:
 - Josh Carson

Senior Licensing Manager at Wisconsin Alumni Research Foundation

608.960.9844

jcarson@warf.org

Thank You

